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For a discrete, or discretized, conservative gradient system, such as is envisaged in
catastrophe theory and arises throughout the physical sciences, it is often necessary to
assess the stable regions of an equilibrium path that exhibits a succession of folds. At
" each fold the degree of instability changes by one, so that as the system evolves from a
0 region of known stability the first fold must represent a loss of stability. At a second fold,
however, it is not clear whether the system is suffering a further loss, as we shall see in
some examples, or is regaining its original stability as is more common in elasticity. A
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2 J. M. T. THOMPSON

new theorem involving a conjugate parameter allows all such stability changes to be
readily assessed on the basis of the form of the equilibrium paths themselves.

The application of the general theory to the external and internal stabilities of an
elastic structure under dead and rigid loading is demonstrated. Under the former, the
load is the control parameter and the corresponding deflection plays the role of the
conjugate parameter, while in a direct analysis of rigid loading these roles are reversed.
A supplementary study of rigid loading which uses Lagrange multipliers supplies
further theorems relating the dual concepts of external and internal stability.

The use of the theorems is demonstrated in the buckling of elastic arches and shallow
domes, and in the incipient gravitational collapse of a massive cold star. The possible
stabilization of bifurcations by rigid loading is examined, and shows how the results can
also be of value in bifurcational instabilities.

INTRODUCTION

In the physical sciences, and particularly in elasticity and astrophysics, it is often necessary to
assess the stability of an equilibrium path generated by the slow scan of a single fundamental
control parameter. Such a path might for example have been determined numerically by simply
solving the statical equilibrium equations on a computer.

Now for a discrete conservative system, catastrophe theory (Thom 1975; Zeeman 1977;
Poston & Stewart 1978) shows that the only structurally stable way in which a change of stability
can arise is at a fold, where the equilibrium path takes a locally extreme value of the single
control parameter. The only other way in which a change of stability can arise is at a point of
bifurcation involving the intersection with a second path, as guaranteed by a recently proved
basic theorem of elastic stability.

Focusing attention on the generic folds, we often need to deduce the stable regions of a con-
tinuous equilibrium path exhibiting a succession of folds. Very often physical reasoning will
guarantee the stability of one end of this path, and we are left with the problem of assessing possible
stability changes as we progress away from this region. At each fold the degree of instability (the
number of negative stability coefficients) changes by one, and so a fold terminating our region of
known stability must imply a loss of stability. At a subsequent fold, however, it is not clear whether
the system is suffering a further loss, or, conversely, is regaining its original stability. Both
alternatives are indeed possible as we shall demonstrate in some illustrations.

A new conjugate theorem established by Katz (1978) to examine the stability transitions of
isothermal stellar spheres allows all such stability changes to be assessed by using a plot of the
control parameter against an energy derivative. This theorem is here related to the energy
transformations of the fold catastrophe and specialized to deal with the dead and rigid loading of
elastic structures where the conjugate energy derivative is related to the corresponding deflexion
and the passive constraining load respectively.

The general theory is finally applied to the buckling of elastic arches and domes, the
gravitational instability of a massive cold star, and the prediction of internal stability changes at
distinct points of bifurcation.

I. GENERAL ANALYSIS
1. Formulation

Consider a general system governed by a potential energy function V(Q;, A), where the @, are
a set of n generalized coordinates and 4 is a single controlled parameter. Such a system has been
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STABILITY PREDICTIONS THROUGH FOLDS 3

extensively studied in nonlinear elasticity (Thompson & Hunt 1973), and in the thermo-
dynamical applications of astrophysics V can be taken as the negative of the entropy. The normal
equilibrium and stability conditions are assumed to hold, and the use of a set of generalized
coordinates implies some standard discretization of continuous systems.

In the buckling of engineering structures the control parameter is often a load appearing
linearly in the potential energy, and when this linearity holds we shall write /1 as P, and V as

V= U@)-PEQ). (1)

Here U(Q;) is a generalized strain energy and P can be viewed as the magnitude of a generalized
force acting through the corresponding deflexion &(Q,).

4\ Vo (e

Ficure 1. Two forms of the energy transformations in the fold catastrophe. (a) V'¢ = 0; (b), V'¢ > 0.

2. The conjugate theorem

It is a simple observation from catastrophe theory that the energy surface of a fold (or limit
point) has the topological form of the equilibrium surface of a cusp (or distinct symmetric point of
bifurcation).

Thisis illustrated in figure 1, which contains two schematic representations of an energy surface
of a fold, the three dimensions of the pictures representing an activity subspace of the real (n + 2)
dimensional space spanned by @, 4 and V. In seeking a stable equilibrium state the system must
here find a locally minimum value on the constant A curves. Incremental fixed axes measured
from the critical point represent AV, the change in V from the critical value, A the change in A
from the critical value, and «, the local principal coordinate that participates in the instability.

The chain-dotted equilibrium path reaches a maximum value of 4 at the critical point, and the
stability transition is indicated by the circles. A solid circle denotes an equilibrium state that is
stable with respect to #; and an open circle denotes an equilibrium state that is unstable with
respect to #,;. Notice that we are here talking only about the stability with respect to u,, which is the
principal coordinate (associated with a diagonalized energy quadratic) that is involved in the
instability. The whole of the drawn path might be either stable or unstable with respect to any
other local principal coordinate ;.
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4 J M. T.THOMPSON

Projections of the equilibrium path are indicated, and we observe in particular that the V
against 4 plot exhibits the two-thirds power law cusp familiar as the stability boundary (or
imperfection-sensitivity diagram) of the cusp catastrophe.

Now since at any /4 level we have an arbitrary choice of energy datum, the constant 4 curves
can be sheared like a stack of playing cards without altering any physical characteristics of the
system. In particular we could if we wished adjust the value of V'C = 0V/04|°, where the super-
script C denotes evaluation at the critical equilibrium state. If V’'C is zero the cusp is aligned
horizontally as shown in the left-hand diagram, while if ¥’C is non-zero the projected cusp is
tilted or inclined as in the right hand diagram. Typically or generically the cusp will of course be
tilted, and we notice that the form of the V against @ projection is significantly different for the
two cases.

N ;\
h\.'
o

&
[
e
s \
K -’

Ficure 2. Six possible forms of the fold showing the energy-control cusps and the corresponding plots of the
conjugate parameter against the control.

Now if we have in front of us just the /1 against @ projection of such a fold, we cannot in general
deduce the direction of the stability loss, since a maximum might be either stable to the right or
stable to the left. However, if we have in front of us the projected V against /1 graph itis clear that
the upper limb represents equilibrium states that are unstable with respect to #, while the lower
limb represents equilibrium states that are stable with respect to «,.

In some important classes of problems, Katz observed that there exists a conjugale parameter K
which we can here define on the equilibrium path as the negative of dV/d4; this total derivative,
being the slope of the V against /A projection, should not be confused with V' = 0V/0A. Now if we
plot K against /1 the projected cusp is replaced by a smooth locally parabolic curve as illustrated
by the possibilities of figure 2, and it is clear that the stability of the equilibrium path is governed
by the sign of dK/dA near the singularity. When this derivative is positive we have stability with
respect to #, while when it is negative we have instability with respect to #,. We should emphasize
that this result is only true close to the singularity since the equilibrium path can, and frequently
does, pass subsequently through a point of vertical tangency (dK/d4 = 0) with a resulting change
in sign but no change in stability.
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STABILITY PREDICTIONS THROUGH FOLDS 5

This result has useful predictive value, and we cast it formally as a conjugate theorem:

THEOREM 1. In the immediate vicinity of a fold catastrophe (or limit point) a positive /negative slope
implies stability [instability with respect to the critical principal coordinate on a plot of the control parameter
against the conjugate parameter.

This result is illustrated in the two upper graphs of figure 3, which show two folds forming a
typical hysteresis cycle as seen in the environment of a cusp catastrophe.
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F1GURE 3. (a), two folds forming a typical hysteresis cycle for the general system; (4), two folds in the dead loading
of a structure; (¢), two folds in the rigid loading of a structure.

When we have a structure loaded by a generalized force P the area under the equilibrium path
on a plot of P against & represents the strain energy of the system, U. We can use this fact to
establish the corresponding theorems for dead and rigid loading.

When the loading is dead, the generalized force P is our control parameter, and the total
potential energy V = U—Pé& is our potential function. This is illustrated in the central two
pictures of figure 3 where P would equal mg, the product of the hanging mass and the acceleration
due to gravity. The shaded areas can now beidentified as the indicated changesin V, showing that


http://rsta.royalsocietypublishing.org/

'y
N
o \

L A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

/ \

r

A

’\
‘//\\ \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

6 J. M. T. THOMPSON

B and D must be the unstable states. Clearly & is now playing the role of the conjugate parameter
and we can write the conjugate theorem for dead loading as:

TureoreM 2. For an elastic structure under a generalized dead load, in the immediate vicinity of a fold
catastrophe (or limit point) a positive/negative slope implies stability [instability with respect to the critical
principal coordinate on a plot of the load against its corresponding deflexion.

The rigid loading situation is illustated in the lower two pictures of figure 3. The corresponding
deflexion & is now imposed, for example, by a rigid screw system, and becomes our controlled
parameter; and the strain energy U, viewed now as a function of # — 1 generalized coordinates
and the displacement &, becomes our potential function. The shaded areas can now be identified
as the indicated changes in U, showing that with respect to the local critical principal co-
ordinate u, the states G and H are unstable. Clearly — P is now playing the role of the conjugate
parameter, and we write the conjugate theorem for rigid loading as:

TueoreM 3. For an elastic structure under a generalized rigid load, in the immediate vicinity of a fold
catastrophe (or limit point) a positive/negative slope implies stability [instability with respect to the critical
principal coordinate on a plot of the negative of the load against its corresponding deflexion.

|

pP r

&

Ficure 4. Imperfection-sensitivity to dynamic disturbances at a fold.

We can note finally in this section that the cusped form of the V-4 or V-P projection of a fold
catastrophe implies a two-thirds power law imperfection-sensitivity to dynamic energy dis-
turbances, as illustrated in figure 4 for the dead loading of a structure. Here AV'is now the magni-
tude of the energy disturbance necessary to cause collapse at a load level PP. This magnitude may
not be sufficient, since some of the energy input may be absorbed by other non-critical modes of

vibration.
3. Perturbation equations

In order to study these results analytically, and to derive some further theorems, we now make a
local perturbation analysis of our continuously folded equilibrium path. To do this we write the

path parametrically as Q= QU(s), A =A%), (2)
where s is a suitable progress parameter, and we write the variation of V along the path as

VE(s) = VQi(s), AP(s)]. (3)
Setting s = A, we then define a conjugate parameter

K(A) = —dVP/dA. (4)
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STABILITY PREDICTIONS THROUGH FOLDS 7

To obtain local information about our equilibrium path P through an equilibrium state £ we
introduce a set of local incremental principal coordinates , tied to the state E. These coordinates
vanish at E, and the energy written as V (u;, 4) has a diagonal form with

VE =0 for isj. (5)

Here subscripts on V denote partial differentiation with respect to the corresponding principal
coordinates u,.
The equilibrium path, written now as [u;(s), A(s)] is characterized by the identity

Viluj(s), A(s)] =0, (6)
and by differentiating repeatedly with respect to s we generate the ordered equilibrium equations
Vi) + V340 = o, ()
Vi ufd + Vi AV P + Vgl +[Viyuf) + Vi AD] AD + Vi A® = 0, (8)
etc., where AW = dA/ds, A® = d24/ds?, etc. (9)
and the dummy-suffix summation convention is employed with all summations ranging from 1
to n.
To study the path variation of the potential energy we have

VE(s) = Vluys), A(s)], (10)

and by differentiating repeatedly we obtain
VPO = V4 + V' AW, (11)
VP® = [Vu + Vi AV ul® + V,u@ +[Viu® + V" AD] A+ V' A, (12)

etc.

Finally for the specialized P-system we can examine the path variation of the generalized
deflexion E(s) = E¥[uy(s)] = — V'Tuy(s)] (13)

by differentiating repeatedly as follows:

EPO = —TViud, etc. (14)

4. Normal equilibrium state

We study first the variations through a normal, non-critical equilibrium state for which all the

stability coefficients are non-zero:
VE#0 forall i (15)

For such a state it is permissible to identify our progress parameter s as the change in the control
s=A=A4-A4% (16)
and hence AD =1 while A® =0 for ¢ 1. (17)

parameter so that

Evaluating the first equilibrium equation (7) at E we have, because V' = 0for i 5 j as a result
of employing principal coordinates,

Visu® +Vi® =0 (nosummation), (18)

giving R — —VE/VE, (19)
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8 J M. T. THOMPSON
The path variation of V at E is then, from (11),

yPOE _ pE (20)
since V¥ = 0, and the second variation is, from (12) with the use of (19),

i=n (V;E)2

VP@E — ["E _ . 21
27T =0
In terms of the conjugate parameter of equation (4), this result can be written
dK[B izn(vimE
| ~ & vE 7 (22)
and finally we can establish the path variation of & for the specialized P-system as
dEPI® _ epam _ Enﬁ_V_iﬁ_V (23)
d4 =1 2

Now if our basic equilibrium state £is vanishingly close to a fold so that V'{ (say) is vanishingly
small, and since it is a property of a fold or limit point that V¥ will not be vanishingly small
(Thompson & Hunt 1973), we see that both of these total derivatives will be dominated by the
term for which ¢ = 1. They will thus both have the same sign as the vanishing stability coefficient
VE and our first two theorems are confirmed.

For our specialized system, equation (23) also gives us the global result, valid both near to and
away from folds:

THEOREM 4. The unique equilibrium path passing through a thoroughly stable equilibrium state cannot
have a negative slope on a plot of the generalized force against its corresponding deflexion.

Here ‘ thoroughly’ signifies that all V'§ must be positive.

5. Critical equilibrium state

To examine the energy transformation in the fold more carefully, we shall now make a pertur-
bation study at a fold or limit point C, for which

V=0 while V§#0 for t+#1. (24)

Here, since /1 reaches an extreme value, we must take s = u,, the critical principal coordinate.
Setting ¢ = 1 in equation (7) we have on evaluation at C,

V3iAMC = 0, (25)
and since for a limit point V1® # 0, we have
A0C =0, (26)
Fori =t # 1, equation ('7) now gives uC = 0, (27)
and setting 7 = 1 in the second equilibrium equation (8) we find
Vi + V1491 =0, (28)

giving A®C = _ G VI, (29)
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STABILITY PREDICTIONS THROUGH FOLDS 9

Thisis the curvature of the equilibrium path on a plot of /4 against #;, and in a similar manner we
can find an explicit expression for the third derivative A®C by continuing this well behaved
perturbation scheme.

We now have sufficient information about the equilibrium path through the limit point C,
and with the use of these solutions the equations of the energy variation become, from (11) and
(12), etc.,

yrac = o, (30)
Prec = 10 @0, (31)
VPAO = VG, 4 $VICARC 4 JICAGC, (32)

By using the result (29) the third derivative can conveniently be simplified to
VPOC = _ 2V 8, 4 V/CABC, (33)

Now, truncating the Taylor series for the change in V¥ and the change in 4, and noting that in
each series the linear coefficient is zero, we have

v = FVT@C2 4 LPPEICS, (34)
A = 14@0y2, (35)
and substituting for «, we have
0P = V'O + [ =2V, + V'CABC] [20/A@C]E, (36)
Hence o = VP —TPC = J'Cx + BA}, (37)

where B is a constant, and we notice that by adjusting the arbitrary energy data we could arrange
that V’¢ = 0, giving us simply _ B -
o’ =+ BA} (B # B). (38)
This is the cusp-like energy variation of figure 1, and on differentiation we have
K(A) = —dVP/dA = — V'CF 3 BA, (39)

giving us the parabolas of figure 2.
Analytical proofs of our theorems follow in a straight-forward manner from this critical state
analysis, but we shall not pursue them here.

II. THE CONCEPT OF INTERNAL STABILITY
6. Extreme forms of loading

We consider a conservative elastic structure or component, suitably discretized, subjected to a
single generalized load. Such a load might be associated with a number of discrete forces or even a
distributed pressure by the use of links, hydraulic pistons, etc. (Thompson 1961).

This generalized load will usually be dead under service conditions, in the sense that the mag-
nitude of the force Pis a controlled quantity. Examples are provided by masses in a gravitational
field, or static fluid forces on an immersed body.

Experimentally, however, it is advantageous to test model structures under some form of rigid
loading, ideally by imposing values of the corresponding deflexion &'. Then, having determined
the behaviour of a structure in a rigid testing machine it is pertinent to ask the question: ‘What
now would be the behaviour of the structure under the dead loading of more practical conditions?

2 Vol. 2g92. A.
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10 J.M. T. THOMPSON

We aim to answer this question in general terms for our previously defined P-system of equation
(1) and, following the apt terminology of Ashwell (1962), we shall speak of the external stability of
a structure under dead loading and conversely the inlernal stability under perfecily rigid loading.

dead loading rigid loading semi-rigid loading
control mg = P control § = & S=¢&+P/k mg = P+ k&

LIS

o |l
-
Ficure 5. Folds and hysteresis cycles in the loading of an elastic structure.

7. Practical loading arrangements

While it is usually easy to ensure dead loading of a structural model, it is of course impossible
without resort to a complicated control system to impose a strict value of the corresponding
deflexion due to the inherent elasticity of any testing frame. We are then lead to consider the four
situations of figure 5.

In the first arrangement we have dead loading by the imposition of P = mg which is our control
parameter with the energy function of equation (1), V(Q;) = U(Q;) —P&(Q;). Fold catastrophes
arise at extreme values of P and dynamic snaps will be at constant P as indicated.

In the second arrangement we have idealized rigid loading by the imposition of & = S where S'is
the contraction of a perfectly rigid screw device. The corresponding deflexion & is now our control
parameter; folds arise at extreme values of & and dynamic snaps will be at constant & as illus-
trated.

The third arrangement shows a practical approach to rigid loading with a spring of stiffness &
representing the elasticity of the whole testing device. This spring plus the perfectly rigid screw
represents a valid model of the majority of semi-rigid loading devices. Our control parameter is §
which is equal to & + P/k, so that we have inclined loading lines in the load-deflexion diagram,
fold catastrophes occurring where these lines touch the equilibrium path of the structure and
dynamic jumps being forced to follow the current loading line as shown.

The fourth arrangement shows another commonly employed form of semi-rigid loading.
Here mg is our control and since mg = P+ k& we are again imposing inclined loading lines as
shown; and analytically this arrangement is identical to that of the previous case.
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STABILITY PREDICTIONS THROUGH FOLDS 11

Conceptually these two practical semi-rigid loading devices can be viewed as ‘structure plus
spring’ under rigid loading and ‘structure plus spring” under dead loading, so that our present
discussions of dead and perfectly rigid loading will effectively cover the problems of semi-rigid
loading. Theorem 4, for example, which implies that if the slope of the load—deflexion curve of a
structure is negative, then the structure must be unstable under dead loading, tells us that for
semi-rigid loading we have the result:

THEOREM b. If the sum of the slopes of the load—deflexion characteristics of the structure and ils testing
machine is negative, then the system is unstable.

A more general loading system can of course be imagined in which a family of straight or
curved loading lines is simply prescribed, as discussed in an earlier paper (Thompson 1961).

8. The conjugate property
Under dead loading, with P = 4 as the control and the relevant energy function given by
equation (1), the path variation of 7 at a normal equilibrium state % is

dVr/dA =Vu®P + V'’ (40)
with the progress parameter s equated to the change in 4, so evaluating at £ we have
dVP/dA|E =T'E = - 6. (41)

Thus the conjugate parameter K is equal to 6 as we have seen in theorem 2.

Under rigid loading, & becomes our control parameter and to apply the general theory of
elastic stability or catastrophe theory in their direct forms we must make a change of coordinates.
We replace the original #n generalized coordinates @; by a set of n—1 coordinates X; which,
together with &, describe uniquely the deformed state of the structure. The strain energy is then a
single-valued function of the X; and &, U = U(X,, &), and this becomes the relevant energy
function.

Now, for a small displacement along an equilibrium path we have the condition §U = P3& so

that P = dU?/dé. (42)

Thus the negative of P is now equal to the conjugate parameter K as we have seen in theorem 3.

9. Relations between internal and external stability

The direct treatment of internal stability, while indicating the behaviour of a structure under
an imposed displacement, is essentially distinct from the direct treatment of the same structure
under an imposed load due to the change of coordinates. Consequently it is instructive to study
the problem of internal stability again, now with the use of the original @, coordinate system of the
dead load analysis. This will allow some vital interrelation to be established.

Equilibrium states under rigid loading are now defined by the stationarity of U(Q;) under the
constraint of constant &. The states are of course the same as those that arise in the dead load
analysis, as is transparent by the use of a Lagrange multiplier which plays the role of the force
magnitude P.

To investigate the stability of an equilibrium state under rigid loading we must now study the
second variation of U(Q;) with the constraint of constant &. Clearly however we are free to study
the second variation of the dead load energy function, V = U — P&, with the same restraint. Thus

2-2
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12 J. M. T. THOMPSON

while the external stability of an equilibrium state E is determined by the second variation of V,

1=n
W =5 X Via, (43)
=1

pol =

which we write more simply as Z = 1C,u2, (44)
the internal stability will be determined in the first instance by the same expression with the linear

constraint 86 = &Py, = 0, (45)
which we write more simply as Y =8u,=0. (46)

Two results are immediately seen. If the structure is stable under dead loading, so that all the
stability coeflicients C; are positive, the structure must be stable under rigid loading. Secondly, if
the structure has two or more degrees of instability under dead load (so that two or more of the C;
are negative) then it is unstable under rigid loading; this conclusion follows immediately from a
result of Courant & Hilbert (1953). Thus the only case of further interest arises when a single
dead load stability coefficient is negative.

We proceed to determine the n — 1 stationary values of Z on the ‘sphere’

i

i

n
u =2 (47)

i=1

with the constraint ¥ = 0. Without the constraint, the » stationary points of Z occur on the
principal #; axes, to give the dead load stability coefficients Z = C, Z = C,, ..., Z = C,. With the
constraint, the stationary values will represent a set of n — 1 rigid load stability coefficients.

With the introduction of two Lagrange multipliers, §7, and r,, we consider the auxiliary
problem of locating the stationary points of

Z = 3Cu%—r, [Zud — 2] — 1, B8, u;. (48)

The subsequent analysis is presented in detail in the Appendix, and the required stationary values
of Z are given by the n— 1 values of r, satisfying the equation

> <CiS—% m/ (2 <Cfn>2)% =0 (49)

which can in general be simplified by omitting the denominator.

Thus a set of stability coeflicients for rigid loading is given by the n — 1 roots of (49), and for a
change of internal stability this equation must be satisfied by r; = 0. Thus the general condition
for a change of internal stability can be written as

i=n (PIE)2
ST U

§i0]
i-1 Vi

= 0. (50)

Comparison of this with equation (23) confirms our dircct prediction that internal stability is
normally lost at a fold involving an extremum of the deflexion &.

The fact that a structure cannot be internally unstable when externally stable clearly poses
limitations on the form of the equilibrium paths of our P-system: a rigid load fold must for example
be encountered afler a dead load fold as we have illustrated in figure 5.

If one of the S; coefficients (S, say) is zero, the numerator of (49) loses one of its roots, and the
missing solution supplied by the complete equation is r; = C; assuming all the C; to be distinct.
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STABILITY PREDICTIONS THROUGH FOLDS 13

Now the simultaneous vanishing of §; and C, gives us a point of bifrucation (Thompson & Hunt
1973) and so we can infer that the fundamental path of a distinct point of bifurcation beyond the
branch cannot be stabilized by rigid loading. This result is established more rigorously by a non-
linear discussion in part ITI, and corresponds to the fact that with §; = 0 the constraint is ortho-
gonal to the incipient instability.

10. Internal stability with external instability

An equilibrium state of a structure might be internally and externally stable, or internally and
externally unstable. The only other possibility, since internal instability implies external insta-
bility, is that the state is internally stable but externally unstable, and we shall now ¢xamine the
conditions under which this last possibility can be realized.

Restricting attention to a perfectly general non-critical equilibrium state let us suppose that
71, the smallest root of £52/(Cy—r)) = 0 (51)

is positive, so that the basic state is internally stable. Then if we suppose that C; < Cy < Cs...
< C,, it follows from a result of Courant & Hilbert (1953) that C; < 7, < C,. Thus C; must be
positive for s not equal to one, while C; may be positive or negative.

Let us suppose that C| is negative, and consider the two series

283/(C;—7) =0 and XZ83%/C;. (52)

We see that in each series the first term is negative, and the remaining terms are positive. More-
over in changing from a term in the first series to the corresponding term in the second series the
negative term has increased in absolute magnitude while the following positive terms have all
decreased in magnitude. Clearly the sum of the second series must be negative.

Thus if 7, is positive and C| is negative, the slope of equation (23) must be negative: moreover
if C, is positive it is clear that the slope will be positive.

It follows that if an equilibrium state of a structure is internally stable it will also be externally
stable unless the equilibrium path passing through that state has a negative slope on a plot of the
load against the corresponding deflexion. That is to say a state of internal stability and external
instability will always be associated with a negative slope on a plot of P against &.

When applied to semi-rigid loading this gives us the result:

THEOREM 6. If the sum of the slopes of the load-deflexion characteristics of the structure and its testing
machine is positive, then the system is stable provided both the structure and machine are themselves internally
stable.

This theorem states that the converse of theorem 5 is true provided the structure and machine are
internally stable.

IIT. APPLICATIONS
11. A pinned arch
To illustrate the application of our theorems we consider first the shallow pinned arch or
curved beam shown in figure 6. It carries a concentrated load at its vertex, and for deformations

symmetrical about its centre line Biezeno & Grammel (1960) determine theoretically the single
continuous equilibrium path shown. This path exhibits no branching points, the curve simply
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14 J M. T. THOMPSON

appearing to crossitselfon this projection, and similar equilibrium paths have been obtained more
recently by Harrison (1978).

Using theorem 2 for dead loading we can deduce that as we move from the stable origin we have
two losses of stability followed by two gains as indicated. In the figure L indicates a loss and G a
gain; a solid circle denotes a stable equilibrium state, a half-solid circle denotes a state with one
degree of instability and an open circle denotes a state with two degrees of instability. Thus under
dead loading the arch would jump dynamically from the first fold to the final stable state as
indicated by the snap arrow.

| 7

L

FiGurE 6. A pinned elastic arch under (a) dead and (b) rigid loading. A solid circle denotes zero, a half-solid circle
denotes one and an open circle denotes two degrees of instability.

Using theorem 3 for rigid loading we can likewise infer one loss and one gain of internal
stability, as indicated in the right-hand graph, with an initial snap during which the passive
constraining force P actually increases. A superb experimental study of this due to Croll &
Walker (1972) is shown in figure 7, the arch being here constrained to deform symmetrically
throughout by means of a central plunger. The mode forms before and after the original dynamic
snap are indicated, the value of the central deflexion, d, being held essentially constant during the
motion by the very stiff semi-rigid loading device.

12. A4 shallow spherical dome

Consider secondly the elastic structure of figure 8. A shallow spherical dome of uniform thick-
ness is loaded at the apex by a concentrated force P and is freely supported at the circumference.
The rotationally-symmetric deformations of the dome are analysed by Biezeno & Grammel
(1960), and for a certain shell geometry the load—deflexion curves are as shown. The continuous
curve from the origin represents a typical shallow shell snapping response, the curve having the
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STABILITY PREDICTIONS THROUGH FOLDS 15

unusual feature of a second relative maximum. The isolated loop is a feature of many problems of
this nature. The paths do not coincide at any of the apparent intersections on the P-& graph, so
there are no branching points present.

Using theorem 2 for dead loading we can deduce that as we progress from the origin we
encounter a loss, a gain, a loss and a final gain of stability as indicated. The degree of instability
of the curve can thus be everywhere assessed, and a dynamic snap would be observed from the
first fold to the finally heavily deflected state.

EI=0.232Nm? |

PR’
EI

100

F1GURE 7. An experimental study of the symmetric deformations of a pinned arch under very rigid loading,
due to Croll & Walker (1972).

Using theorem 3 for rigid loading we have no folds on the path from the origin which is thus
everywhere internally stable. No dynamic snap would be encountered under rigid loading.

The closed loop requires a separate discussion. As the loop is traversed in the direction of the
arrows the losses and gains of internal and external stability can be deduced as shown: but since
there is no state of known stability on the loop the precise degree of instability cannot be deduced
by the use of these two theorems alone.

We can note finally that a closed loop of this type must of necessity enclose zero net area for a
conservative system.

13. Thermodynamics of a hot stellar mass

In his original application of theorem 1, Katz (1978) considers the stability of hot stellar

spheres with identical particles. For this thermodynamical problem a graph of the inverse of the
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16 J M. T.THOMPSON

temperature, 71, against the energy, E, serves to identify all the stability transformations for
two distinct situations. A vertical tangent defines a stability change for an isolated star, while a
horizontal tangent defines a stability change for a star in a heat bath.

The conjugate properties of 7-! and E clearly have a profound similarity to the conjugate
properties of P and & in our discussion of dead and rigid loading.

Pl|E P&
/’
?/7)9/7% m ‘g 77@/77/ 77/@7/77 -—L.S 7/)%77/7.
=t
T Tr[l_ﬂ
P E
L L snap
(\L =
G
&
— —

G
G
Ficurke 8. A shallow spherical dome under (a) dead and (b) rigid loading.

14. Gravitational collapse of a massive cold star

To shed some light on the realistic gravitational collapse of a massive hot star, which would
include the complications of angular momentum, magnetic fields, turbulence and shock waves,
Harrison et al. (1965) considered the ground state of a system of 4 baryons, neutrons and protons,
that have been catalysed to the end point of thermonuclear evolution and cooled as closely as
desired to absolute zero.

For A = 1 the ground state corresponds to one hydrogen atom, for 4 = 4 to a helium atom and
for A = 56 to an iron atom. Stepping up to 4 = 56 x 10% the catalysed end product is a set of 108
iron atoms, 5Fe, arranged in a body-centred cubic lattice. When the baryon number reaches the
order of 10% or 1057 the self-induced gravitational forces are so powerful that the extreme
pressure raises the electrons to relativistic energies and they transmute protons to neutrons. The
nuclear composition changes from 5Fe to heavier and more neutron-rich nuclei.

Using the unique and universal equation of state corresponding to this cold catalysed matter,
an analysis is made of the spherically symmetric equilibrium configurations of a self-gravitating
stellar mass, the necessary general relativistic equation of hydrostatic equilibrium being obtained
by extremizing the mass as sensed externally. The stability of these equilbrium configurations
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STABILITY PREDICTIONS THROUGH FOLDS 17

against radial spherically symmetric disturbances is determined by studying the characteristic
acoustical modes of vibration and by examining the second variation of the mass energy for a fixed
baryon number.

The results of these equilibrium and stability analyses are summarized in figure 9 the top graph
being a plot of the mass energy against the central density. We see that there are only two regions
of stability corresponding to white dwarf stars and neutron stars respectively. With an increasing
number of baryons and mass energy, each of these regions terminates at a critical equilibrium
state corresponding to a fold catastrophe at which gravitational forces dominate and collapse
can start. We note in particular that the critical masses, M, are of the order of the mass of the sun,
M 4, and that the critical equilibrium states beyond C all represent a further destabilization of the
stellar system.

R
— a
Mg A
1 - ““\
s E
O eeanOme
|
0 .
1020 '00
| ()
8
Q
&
(5]
3
2
=
£ A
% A\/B C DY*]\F\

Ficure 9. Equilibrium and stability of a massive star compressed by its own gravitational field. (a), The mass
energy as a fraction of the solar mass against the central density in g/cm?; (4), the variation of the acoustical
stability coeflicients.

As the equilibrium path emerges from the vicinity of the origin we start with an atom of
hydrogen, a cannon ball of iron, objects of planetary mass and finally the cold white dwarfs. The
first instability at the fold 4, which can be predicted by using only a Newtonian equilibrium
equation, corresponds to the overwhelming of the electron pressure at a baryon number of
approximately 1.4 x 1057. At the minimum B the stellar matter has been crushed to a substantial
fraction of nuclear density and its increased rigidity leads to the stable neutron stars. At the
second peak C the gravitational forces finally dominate even this nuclear rigidity. We note here
that the baryon number at C, 0.84 x 10%7, is lower than that at 4. Therefore, if in a highly idealized
dynamical collapse of a cold white dwarf there was no change in the baryon number (no matter
thrown off), the star could not stabilize as a neutron star.

The complete stability analysis for spherically symmetric disturbances due to Harrison ef al.
(1965) forms a most attractive illustration of our general analysis. They identified the mass
energy M as a governing potential determining both the equilibrium and stability, with the baryon

3 Vol. 2g2. A.
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18 J. M. T. THOMPSON

number 4 (or equivalently the mass before assembly A, which is proportional to 4) playing the
role of a control parameter and the central density p, playing the role of an active generalized coordi-
nate. They drew a three dimensional picture of the energy transitions in the A/-4-p, space exactly
equivalent to our figure 1 of the fold catastrophe with dM/04 = V'C # 0 at the critical point.
Under this condition they observed that both the potential M and the control 4 took extreme
values on the equilibrium path at the critical point, and they demonstrated the two-thirds power
law cusp in the energy—control projection.

r M—My
D
0.04}
E
0.02F
ol B e\ A
—0.02f
C
—0.04 . . , . . . .
0 04 0.8 1.2 1.6 My,

Ficure 10. The energy versus control cusps for the folds of a massive star on a plot of the mass energy minus the
mass before assembly, M — M, against the mass before assembly, M4. A solid circle denotes zero, a half-solid
circle denotes one, and an open circle denotes two degrees of instability.

Now the mass before assembly, 41, is simply the baryon number 4 multiplied by the standard
baryon mass sy and so represents a valid control parameter. It is however closely equal to the
equilibrium mass energy M, and for this reason the projection of the equilibrium path onto the
energy—control plane lies very close to the 45° line. To observe the cusps it is therefore more
convenient to plot A minus M, (which is of course also a valid potential function) against the
control M, and we have done this in figure 10. On this picture, by inspecting the energy levels
close to the folds, we can deduce the sequence of stability transformations shown in the lower
graph of figure 9.

At A the originally stable path loses its stability with respect to mode one by the passage through
zero of the first stability coeflicient V;;. Stability is recovered at B by the passage back through
zero of V;; but finally lost at C as this stability coefficient again becomes negative. Each fold after
C now corresponds to a loss of stability, V,, becoming negative at D, Vg; becoming negative at
E, V,, becoming negative at F, etc.

These statical computations and the associated linear vibration analyses form an attractive
illustration of a sequence of fold catastrophes, and the slow gravitational capture of mass by a
white dwarf or neutron star gives us the slow evolutionary change of the control parameter.
However, once collapse is initiated at A or C most of the assumptions of the highly idealized
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STABILITY PREDICTIONS THROUGH FOLDS 19

analysis break down. Both baryons and radiant energy may be lost from the system (Weinberg
1972, Misner et al. 1973) and so the value of the control parameter is not preserved.

Questions such as the possible formation of a black hole by the collapsing star are thus quite
beyond the scope of this idealized study.

We must finally comment on the close numerical equivalence of M, and M on the equilibrium
path. This has caused some misunderstanding in the past. From a conceptual point of view
the distinction is clear and vital, as has been emphasized by E. C. Zeeman (1977 in private
correspondence with the author): the mass before assembly, M,, is the catastrophe theory
control parameter while the mass after assembly, M, is the catastrophe theory potential. However,
when we have solved the equilibrium equations and come to plot the equilibrium values of M
and M, against the generalized coordinate p, we shall find that the two graphs are for all
practical purposes identical. To illustrate this point we show in table 1 the ratio of M to M, at
the critical points where it departs furthest from unity, and we see that the equilibrium graphs
could not easily be distinguished.

TABLE 1
MMy
first maximum A 0.9999
first minimum B 1.004.1
second maximum C 0.9701
second minimum D 1.0980
third maximum E 1.0603

15. Bifurcations under rigid loading

A basic theorem of elastic stability (Thompson 1970; Thompson & Hunt 1973) recently
proved by Kuiper, as reported by Chillingworth (1976), ensures that in the absence of a fold, the
initial stability of a discrete conservative system under a single control parameter can only be lost
at a point of bifurcation. Such a branching point is of course structurally unstable (Thom 1975)
but is nevertheless of considerable theoretical relevance, and we shall now apply some of our
results to assess the corresponding internal stability changes for our specialized P-system.

A useful trick in determining the stability transformations at a point of bifurcation is to examine
the adjacent equilibrium paths of imperfect systems which generically only exhibit folds, since
the stability of perfect and imperfect states will be identical as the imperfection magnitude is
allowed to vanish. The validity of this argument becomes apparent when the full equilibrium
surfaces are inspected (Thompson & Hunt 1975, Hunt 1977).

We have used this procedure to examine the internal stability changes for a specialized P-
system exhibiting the three distinct branching points classically delineated by Koiter (1943).
These are shown in figure 11 on a plot of the generalized load P against a typical @, coordinate
and on the special Pagainst & plot. Determination of the changes of infernal stability by the folds in
the response of imperfect systems allows us to establish completely the stability changes shown, a
solid curve denoting a path that is internally stable under prescribed & and a broken curve
denoting a path that is internally unstable under prescribed &. The folds of imperfect systems that
correspond to extreme values of the corresponding deflexion & are drawn as small circles.

We see that for the perfect systems the only difference between these pictures and the well-
known dead-load stability diagrams is that the post-buckling path of the unstable-symmetric
point of bifurcation is stabilized by rigid loading if its slope is negative on the P against & plot.

3-2
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20 J- M. T.THOMPSON

stabilized by rigid loading

asymmetric

stable-symmetric

unstable-symmetric (case 1)

unstable-symmetric (case 2)

Ficure 11. Changes of internal stability at distinct branching points. Solid lines denote states that are stable under
rigid loading while broken lines denote states that are unstable under rigid loading.

CONCLUDING REMARKS

Fold catastrophes, in their own right, and in the perturbations of branching points, play a
central role in the theory of generic instabilities (Thom 1975, Zeeman 1977, Poston & Stewart

1978, Thompson & Hunt 1977). This importance is emphasized by

their being the only struc-

turally stable singularities that can be observed in the real world during the operation of a single

control parameter. We have shown that the conjugate theorem

and the more specialized

theorems established for the internal and external stabilities of an elastic structure can be useful
in assessing the stability transitions through a succession of folds and, indirectly, the stability

changes at bifurcations.
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STABILITY PREDICTIONS THROUGH FOLDS 21

APPENDIX
The evaluation of the stationary values of
Z=3Cu3
on the ‘sphere’ 2w =2,
with the constraint ZSu; =0,
is here presented in detail. In this way the range of validity of the ‘general’ results quoted in
section 9 is made apparent.
To determine the stationary values of Z we introduce the two Lagrange multipliers, p; and p,,
and consider the auxiliary function

Z = §3C; U —3py(Zuj —2) — po TS ;.

The stationary points of this function are also the stationary points of Z, so for the stationary
values we must evaluate Z under the conditions

Su? = 2, (A)
ZS;u; =0, (B)
and 0Z/ou, = Cou, —pytt,—py S, = 0 forall 7. (G)

We can observe that these conditions represent z+ 2 equations for the n+ 2 ‘unknowns’ u,,

p1and p,.
If we multiply the rth equation of C by u,, repeating this procedure for all values of 7 from 1 to ,

and then sum the resulting » equations, we have
2Cu3 —prZud—py X S;u; = 0.
Now, by using equations (A) and (B) this yields
Z = }35C;u8 = p,.

Thus the evaluation of the stationary values of Z reduces to the solution of equations (A), (B) and
(C) for p,.

Equation (C) gives U, = pyS,/(C,—p,) forall r.
Substitution of this expression for «, in equation (A) gives
PAESI/(Compy)? = 2, (D)
and substitution of the expression for u, in equation (B) gives
P28/ (Ci—p1) = 0. (E)
Finally eliminating p, (which might of course be zero) from these two equations we have the
single equation for p;, 52 §2 3
> /(z : 2)=o (F)
Ci—p1 (Ci—p1)

The n— 1 roots of this equation will supply the required stationary values of Z. We shall write
p1 = P, to represent a particular solution of the equation.
Considering the evaluation of a particular solution, and with a view to dropping the


http://rsta.royalsocietypublishing.org/

A

<
o
NI
olm
=
@)
O
= uwv

PHILOSOPHICAL
TRANSACTIONS

Py
‘//\\ \
A

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

—%

SOCIETY

OF

A

A

OF

Downloaded from rsta.royalsocietypublishing.org

22 J M. T. THOMPSON

denominator from the left-hand side, let us examine the conditions under which the
denominator of equation F can become infinite.

We shall assume that all the coefficients C; are distinct, so that C; # C; for all¢ # j. Clearly then
the denominator can only tend to infinity if 5, tends to one of the coeflicients C;, C, say. Moreover
S; must be of an order greater than C; — py, so that (C; —p,) /S, is tending to zero.

Assuming then that p, - C, and §; > (C; —p,), only the first term of the denominator nced be
retained, and equation (F) implies that

01—/31( s . S3 )
— + — +...) = 0.
Sy Ci—p1 Co—py

Considering now the first term in the brackets, we see that this equation implies that §; must be
tending to zero.

Thus the only solutions that the denominator can supply are represented by p, = C,, which
arises when S, is equal to zero.

It follows thatif no coefficient S; is equal to zero, and if all the coeflicients C; are distinct, we can

omit the denominator and write
28%/(Ci—py) =0 (G)

The roots of this equation will in general yield the n — 1 stationary values of Z.
Ifhowever one of the coefficients S; drops to zero, this equation loses one of its roots, and we have
seen that the missing solution is supplied by the denominator of equation (F). More specifically,

ifp of the S;, Sy, Sy, ..., S, are equal to zero, equation (G) will supply # — 1 — p stationary values of

Z, and the missing solutions will be given by p; = Cy, p; = C,, ... p; = C,, provided that all the
C; are distinct.

If one of the stationary values of Z is to be equal to zero, equation (F) must be satisfied by
p1 = 0. Thus the condition for a vanishing stationary value can be written as

ST (< SH\}

If, moreover, no C; is equal to zero, the denominator can be omitted, so that we have
28§3/C; =0, I

which is the ‘general’ condition for a vanishing stationary value of Z.
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